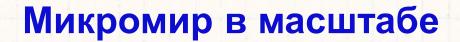
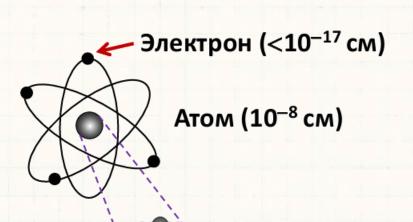


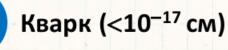
«Основы производства радиоактивных изотопов»


Лекция 1. Основные ядерно-физические термины и определения.

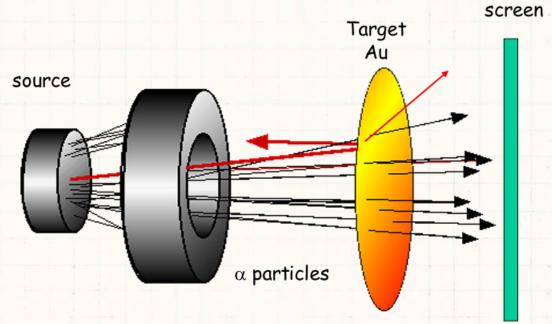

и.о. доцента кафедры теоретической и ядерной физики PhD Зарипова Ю.А.

Области применения радионуклидов

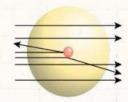
(Инфографика: Адриана Варгас/МАГАТЭ).



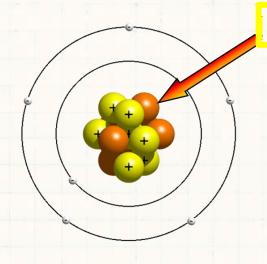
Ядро (≈10⁻¹² см)



Нуклон: протон, нейтрон (≈10⁻¹³ см)



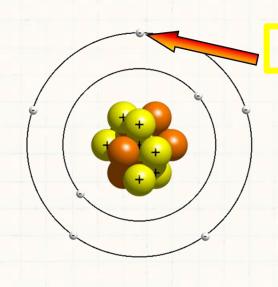
Открытие ядра


Строение атома было впервые исследовано в ходе эксперимента Резерфорда в 1909 году. Пучок α-частиц, образующихся при радиоактивном распаде радия, был направлен на лист очень тонкой золотой фольги.

Результаты показали, что большая часть массы атома сосредоточена в очень малой области.

Состав атомных ядер

Ядро


- 1) Находится в середине атома.
- 2) Состоит из нуклонов: протонов и нейтронов.
- 3) Имеет положительный заряд.
- 4) Почти вся масса атома сосредоточена в ядре.

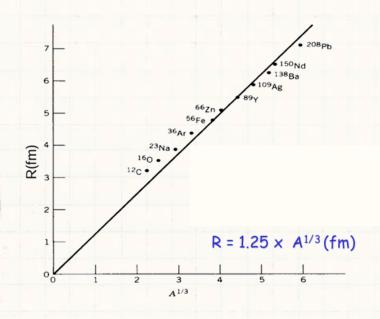
$$m_p = 1.007276u = 938.27 \text{ MeV}/c^2$$

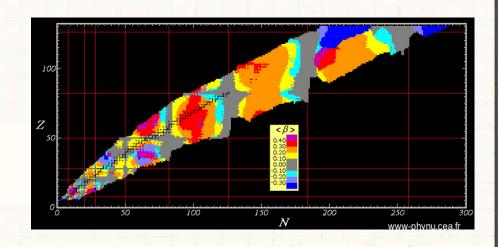
 $m_n = 1.008665u = 939.57 \text{ MeV}/c^2$

Ядро характеризуется массовым числом A и атомным номером Z. Оно записывается ${}^{A}X_{7}$:

- 1) Атомный номер показывает, сколько в атоме протонов.
- 2) Чтобы получить количество нейтронов просто вычтите атомный номер из массового числа: **N=A-Z**.

Состав атомных ядер

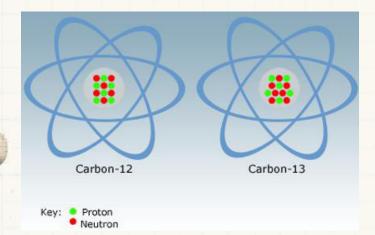



Электроны

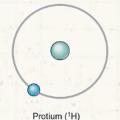
- 1) Двигаются вокруг ядра.
- 2) Заряжены отрицательно.
- 3) Практически не имеют массы.

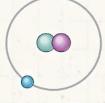
Частицы	Заряд		Macca	
	Кл	условные единицы	r	а.е.м.
Протон	1,6 • 10-19	+1	1,67 - 10-24	1,00728
Нейтрон	0	0	1,67 • 10 -24	1,00866
Электрон	-1,6 • 10-19	-1	9,1 • 10 -28	0,00055

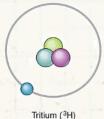
Форма и размеры атомных ядер



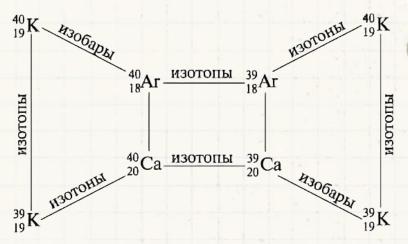
$$R=r_0A^{1\,/\,3}$$
 , где ${
m r_0}$ =1,3 фм=1,3·10⁻¹⁵ м, А – массовое число.


$$\rho = \frac{M}{V} \approx \frac{M}{4/3\pi R^3} = \frac{1,66 \cdot 10^{-27} \, A\kappa\kappa}{4/3\pi (1,3 \cdot 10^{-15} \, A^{1/3})^3 \, M^3} \approx 1,8 \cdot 10^{17} \, \kappa z / \, M^3 \, .$$


Нуклиды

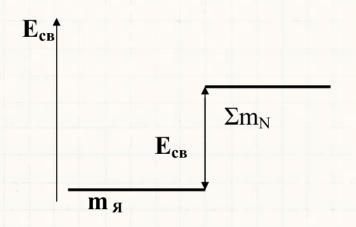

<u>изотопы</u>

Изотопы имеют одинаковые количество протонов ($Z_1 = Z_2$), но разное число нейтронов (N). ($A_1 \neq A_2$)



Deuterium (²H) Trit

<u>ИЗОТОНЫ</u>


Изотоны имеют одинаковые количество нейтронов $(N_1 = N_2)$, но разное число протонов (Z). $(A_1 \neq A_2)$

<u>ИЗОБАРЫ</u>

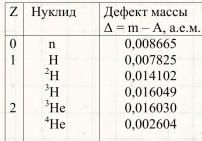
Изобары имеют разное число протонов (Z) и нейтронов (N), но $A_1 = A_2$

Масса и энергия связи ядра

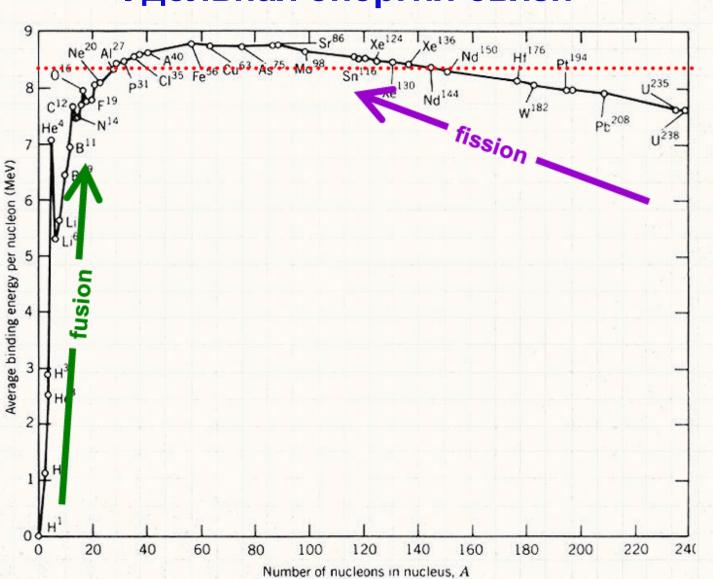
где Σm_N –сумма масс нуклонов, $m_{\rm H}$ –масса ядра.

$$E_{cB} = Zm_p + Nm_n - m_{\mathcal{A}},$$

где Z и N – число протонов и нейтронов в ядре


$$\mathbf{E}_{\mathrm{CB}} = \mathbf{Z}\mathbf{m}_{\mathrm{H}} + \mathbf{N}\mathbf{m}_{\mathrm{n}} - \mathbf{m}_{\mathrm{a}}$$

где m_a – масса нуклида, m_H - масса нуклида 1H .


Более того, для упрощения расчетов вводят понятия дефект массы Δ как разность между массой (в а.е.м.) и массовым числом А ядра или нуклона: $\Delta = m - A$.

$$\mathbf{E}_{cB} = \mathbf{Z} \mathbf{\Delta}_{H} + \mathbf{N} \mathbf{\Delta}_{n} - \mathbf{\Delta}_{a}$$

1 аем = $M_{12C}/12$ = (1,660531 \pm 0,000011)ullet10-24 г=931,48 МэВ

Удельная энергия связи

СПАСИБО ЗА ВНИМАНИЕ!

